Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732672

RESUMO

Due to the difficulty of accurately characterizing properties such as the molecular weight (Mn) and grafting density (σ) of gradient brushes (GBs), these properties are traditionally assumed to be uniform in space to simplify analysis. Applying a stochastic reaction model (SRM) developed for heterogeneous polymerizations, we explored surface-initiated polymerizations (SIPs) with initiator gradients in lattice Monte Carlo simulations to examine this assumption. An initial exploration of SIPs with 'homogeneously' distributed initiators revealed that increasing σ slows down the polymerization process, resulting in polymers with lower molecular weight and larger dispersity (D) for a given reaction time. In SIPs with an initiator gradient, we observed that the properties of the polymers are position-dependent, with lower Mn and larger D in regions of higher σ, indicating the non-uniform properties of polymers in GBs. The results reveal a significant deviation in the scaling behavior of brush height with σ compared to experimental data and theoretical predictions, and this deviation is attributed to the non-uniform Mn and D.

2.
Chemistry ; 30(23): e202400115, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38369622

RESUMO

Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.

3.
Adv Healthc Mater ; 12(23): e2300385, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040018

RESUMO

Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H2 S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.


Assuntos
Peróxido de Hidrogênio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Imunoterapia , Microambiente Tumoral
4.
ACS Appl Mater Interfaces ; 15(4): 5870-5882, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689577

RESUMO

Natural biopolymers can be controllably in situ synthesized in organisms and play important roles in biological activities. Inspired by this, the manipulation of in situ biosynthesis of functional polymers in vivo will be an important way to obtain materials for meeting biological requirements. Herein, in situ biosynthesis of functional conjugated polymer at the tumor site was achieved via the utilization of specific tumor microenvironment (TME) characteristics for the first time. Specially, a water-soluble aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) nanoparticles at the tumor site, which was activated via the catalysis of hydrogen peroxide (H2O2) overexpressed in TME to produce hydroxyl radical (•OH) by coinjected horseradish peroxidase (HRP). Benefiting from outstanding near-infrared (NIR)-II absorption of PSPA, the in situ polymerization process can be validly monitored by photoacoustic (PA) signal at the NIR-II region. Meanwhile, in situ polymerization would induce the size of polymeric materials from small to large, improving the distribution and retention of PSPA at the tumor site. On the combination of NIR-II absorption of PSPA and the size variation induced by polymerization, such polymerization can be applied for tumor-specific NIR-II light mediated PA image and photothermal inhibition of tumors, enhancing the precision and efficacy of tumor phototheranostics. Therefore, the present work opens the way to manipulate TME-activated in situ biosynthesis of functional conjugated polymer at the tumor site for overcoming formidable challenges in tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Polimerização , Peróxido de Hidrogênio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polímeros , Compostos de Anilina , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Microambiente Tumoral
5.
Biomaterials ; 289: 121798, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108582

RESUMO

Wound is highly susceptible to bacterial infection, which can cause chronic wound and serial complications. However, timely treatment is hampered by the lack of real-time monitoring of wound status and effective therapeutic systems. Herein, in situ biosynthesis of functional conjugated polymer in artificial hydrogel was developed via the utilization of biological microenvironment to realize monitoring in real time of wound infection and inhibition of bacteria for the first time. Specially, an easily polymerizable aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) in calcium alginate hydrogel, which was initiated via the catalysis of hydrogen peroxide (H2O2) overexpressed in infected wound to produce hydroxyl radical (•OH) by preloaded horseradish peroxidase (HRP). Benefitting from outstanding near infrared (NIR) absorption of PSPA, such polymerization can be ingeniously used for real-time monitoring of H2O2 via naked-eye and photoacoustic signal, as well as NIR light-mediated photothermal inhibition of bacteria. Furthermore, combining the persistent chemodynamic activity of •OH, the in vivo experimental data proved that the wound healing rate was 99.03% on the 11th day after treatment. Therefore, the present work opens the way to manipulate in situ biosynthesis of functional conjugated polymer in artificial hydrogels for overcoming the issues on wound theranostics.


Assuntos
Infecções Bacterianas , Infecção dos Ferimentos , Alginatos , Compostos de Anilina , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Peroxidase do Rábano Silvestre , Humanos , Hidrogéis/farmacologia , Peróxido de Hidrogênio , Radical Hidroxila , Polimerização , Polímeros
6.
Polymers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015526

RESUMO

The stochastic reaction model (SRM) treats polymerization as a pure probability-based issue, which is widely applied to simulate various polymerization processes. However, in many studies, active centers were assumed to react with the same probability, which cannot reflect the heterogeneous reaction microenvironment in heterogeneous polymerizations. Recently, we have proposed a simple SRM, in which the reaction probability of an active center is directly determined by the local reaction microenvironment. In this paper, we compared this simple SRM with other SRMs by examining living polymerizations with randomly dispersed and spatially localized initiators. The results confirmed that the reaction microenvironment plays an important role in heterogeneous polymerizations. This simple SRM provides a good choice to simulate various polymerizations.

7.
Angew Chem Int Ed Engl ; 61(7): e202107076, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34227715

RESUMO

Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Técnicas Fotoacústicas , Hipóxia Tumoral , Animais , Carbocianinas/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Camundongos Nus , Estrutura Molecular , Imagem Óptica
8.
J Mol Model ; 27(5): 144, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931800

RESUMO

We studied the properties of rigid dendrimers with different branching angles by means of Monte Carlo simulations on a coarse-grained level. It was found that the terminal groups of dendrimers with both rigid and flexible spacers could locate near the center of the molecule. In flexible dendrimers, the wide distribution is attributed to the back folding of flexible spacers, while in rigid dendrimers, it is caused by the branching angle effect that a branch will grow laterally due to the restriction of a non-zero branching angle. It has been established that the branching angle is a key parameter for rigid dendrimers, which can be applied to tune the properties of rigid dendrimers: decreasing branching angle is helpful to obtain dendrimers with a larger size, lower density, and more terminal groups locating at periphery.

9.
Small ; 16(46): e2004345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33089606

RESUMO

Photoimmunotherapy (PIT) has shown enormous potential in not only eliminating primary tumors, but also inhibiting abscopal tumor growth. However, the efficacy of PIT is greatly limited by tumor hypoxia, which causes the attenuation of phototherapeutic efficacy and is a feature of the immunosuppressive tumor microenvironment (TME). In this study, one type of brand-new artificial metalloprotein nanoanalogues is developed via reasonable integration of a "phototherapy-enzymatic" RuO2 and a model antigen, ovalbumin (OVA) for enhanced PIT of cancers, namely, RuO2 -hybridized OVA nanoanalogues (RuO2 @OVA NAs). The RuO2 @OVA NAs exhibit remarkable photothermal/photodynamic capabilities under the near-infrared light irradiation. More importantly, the photoacoustic imaging and immunofluorescence staining confirm that RuO2 @OVA NAs can remarkably alleviate hypoxia via in situ catalysis of hydrogen peroxide overexpressed in the TME to produce oxygen (O2 ). This ushers a prospect of concurrently enhancing photodynamic therapy and reversing the immunosuppressive TME. Also, OVA, as a supplement to the immune stimulation induced by phototherapy, can activate immune responses. Finally, further combination with the cytotoxic T-lymphocyte-associated protein 4 checkpoint blockade is reported to effectively eliminate the primary tumor and inhibit distant tumor growth via the abscopal effect of antitumor immune responses, prolonging the survival.


Assuntos
Metaloproteínas , Oxigênio , Catálise , Linhagem Celular Tumoral , Fototerapia
10.
Polymers (Basel) ; 11(2)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30960279

RESUMO

While applying computer simulations to study semiflexible polymers, it is a primary task to determine the persistence length that characterizes the chain stiffness. One frequently asked question concerns the relationship between persistence length and the bending constant of applied bending potential. In this paper, theoretical persistence lengths of polymers with two different bending potentials were analyzed and examined by using lattice Monte Carlo simulations. We found that the persistence length was consistent with theoretical predictions only in bond fluctuation model with cosine squared angle potential. The reason for this is that the theoretical persistence length is calculated according to a continuous bond angle, which is discrete in lattice simulations. In lattice simulations, the theoretical persistence length is larger than that in continuous simulations.

11.
Biomater Sci ; 7(4): 1705-1715, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30758351

RESUMO

Indocyanine green (ICG), a multifunctional near-infrared (NIR) imaging agent approved by the FDA, has been extensively used in clinical cancer theranosis, but limited by its inherent instability, short plasma half-life and lack of targeting ability. Herein, an in situ formed photothermal network based thermosensitive hydrogel (PNT-gel) constructed by using supramolecular cross-linking conjugated polymers was developed for the stabilization of ICG and efficient combinatorial photothermal/photodynamic antitumor therapy. While the conjugated polymeric backbone in PNT-gel anchored the aromatic phototherapeutic agent ICG via π-π stacking interactions to avoid premature leakage, it also directly converted low-dose NIR light to induce localized hyperthermia to enhance the photothermal effect. The PNT-gel shows a reversible gel-to-sol upper critical solution temperature (UCST) that is slightly above body temperature. Therefore, the controlled release of ICG was switched on or off by NIR via photothermal-induced gel-sol transition. In vitro and in vivo antitumor experiments demonstrated that ICG loaded PNT-gel not only efficiently induced the killing of 4T1 cancer cells, but also achieved almost complete eradication of 4T1 cells by one-dose intratumoral injection in combinatorial photothermal/photodynamic therapy under irradiation of a low-dose 808 nm laser (0.14 W cm-2). Additionally, the combinational therapy proved to enhance the effectiveness of photodestruction without tumor recurrence compared with photothermal therapy (PTT) or photodynamic therapy (PDT) treatment alone.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Corantes/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Verde de Indocianina/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Terapia Combinada , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Raios Infravermelhos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Temperatura
12.
J Mater Chem B ; 7(15): 2493-2498, 2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255126

RESUMO

Sulfur dioxide (SO2) derivatives play critical roles in various biological processes. Therefore, effective methods for monitoring SO2 are of vital importance in bisulfite/sulfite biology. In this study, a two-photon (TP) imaging probe (CQ-SO2) for detecting SO2 derivatives was designed and constructed, based on the chromenoquinoline (CQ) fluorophore and a ß-chlorovinyl aldehyde sensing moiety. The TP properties of the CQ derivatives were revealed for the first time in this study. This study enriched the biological application range of CQ derivatives and also provided a new choice for the development of TP dyes. In particular, the CQ-SO2 probe exhibited a fast response time (about 5 s), low detection limit (16 nM) and ultrahigh specificity towards SO2 derivatives. Furthermore, the probe was successfully applied to the highly specific TP bioimaging of SO2 derivatives in living cells and zebrafish.


Assuntos
Corantes Fluorescentes/química , Fótons , Quinolinas/química , Dióxido de Enxofre/química , Peixe-Zebra , Animais , Sobrevivência Celular , Células HeLa , Humanos , Limite de Detecção , Modelos Moleculares , Conformação Molecular , Fatores de Tempo
13.
Chemistry ; 24(49): 12827-12837, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29978545

RESUMO

Indocyanine green (ICG) is an effective light absorber for laser-mediated photodynamic therapy. However, applications of ICG are limited due to its rapid degradation and poor photostability in water. Herein, we report the development of a multifunctional nanoplatform by coating ICG on the surface of single-walled carbon nanohorns (SWNHs) through π-π stacking, obtaining SWNH-ICGs with high solubility and stability under physiological conditions. The SWNH-ICGs could be used as a single nanoplatform to simultaneously produce satisfactory hyperthermia and reactive oxygen species under near-infrared (NIR) laser irradiation. In addition, the SWNH-ICGs not only improved the photostability of ICG in different media, but also protected it from light degradation. The SWNH-ICGs exhibited highly efficient thermal/photoacoustic (PA) imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) effects, even under low-power laser irradiation (0.3 W cm-2 ) in vitro. Combined PTT and PDT effectively killed triple-negative breast cancer 4T1 cells, demonstrating a markedly improved and synergistic therapeutic effect compared to PTT or PDT alone. Furthermore, significant tumor growth inhibition as well as tumor cell death were observed following PTT/PDT at 808 nm laser irradiation, confirming the synergistic effects of SWNH-ICGs over free ICG in vivo. This facile and simple methodology for thermal/PA imaging-guided PTT/PDT suggests that SWNH-ICGs may serve as an effective nanoplatform for cancer therapy.


Assuntos
Carbono/química , Verde de Indocianina/química , Neoplasias Mamárias Animais/terapia , Nanopartículas/química , Fotoquimioterapia/métodos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Portadores de Fármacos , Feminino , Hipertermia Induzida , Verde de Indocianina/uso terapêutico , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Distribuição Tecidual , Ondas Ultrassônicas
14.
ACS Macro Lett ; 5(4): 450-454, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607226

RESUMO

A novel multifunctional aggregation-induced emission (AIE) nanoaggregate for targeted imaging and enzyme-triggered chemotherapy was successfully fabricated via a one-step assembly. In this system, a quaternary ammonium-modified tetraphenylethene derivative (QA-TPE) acted as the AIE fluorophore as well as the chemotherapeutic agent, and a water-soluble acidic polysaccharide, hyaluronic acid (HA) acted as the aggregation-inducing scaffold, AIE turn-on agent, and targeting agent for CD44 receptor-mediated cancer cells. More importantly, HA endowed the QA-TPE/HA nanoaggregate both good biocompatibility and hysteretic chemotherapy activity, which were achieved by controlling the release of QA-TPE using the endogenous HAase in CD44 receptor-mediated cancer cells.

15.
Chemistry ; 21(52): 18993-9, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26514914

RESUMO

Solid-state fluorescence sensing is one of the most appealing detection techniques because of its simplicity and convenience in practical operation. Herein, we report the development of a red-emitting carbon dots (RCDs)-based material as a solid-state fluorescence sensor for the selective probing of gaseous ammonia. The RCDs were prepared by a low-cost, one-step carbonization method using sugar cane bagasse as the carbon precursor. The pristine RCDs were then directly coated on polyvinylidene fluoride membrane to produce a new fluorescence sensor capable of selectively distinguishing toxic gaseous ammonia from other analyte vapors through sensitive fluorescence quenching with a low detection limit. More importantly, the interfacial response mechanism occurring on the surface of the RCDs has been studied by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman measurements. The results indicate that fluorescence quenching in the RCDs might result from ammonia-induced Michael addition through insertion of N into the C=C group and deprotonation of the carboxyl group. To the best of our knowledge, this is the first report that provides clear insight into the mechanism of surface chemistry on CDs in the solid state.

16.
J Mater Chem B ; 3(18): 3767-3776, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262851

RESUMO

The construction of advanced phototherapy systems with high therapeutic efficacy toward cancer and low side effects, especially targeted species, is highly desirable. Herein, we developed one kind of water-soluble hyaluronic acid-hybridized polyaniline nanoparticles (HA-PANI NPs) as a nanoplatform for photothermal therapy (PTT) with targeted specificity of a CD44-mediated cancer cell. The water-soluble HA-PANI NPs were fabricated by one-step oxidative polymerization using aniline as a polymerizable monomer and HA as a stabilizer and targeted agent, where non-covalent electrostatic interaction between the negatively charged polymer HA and the cationic polymer PANI drives the formation of HA-PANI NPs. It was demonstrated that approximately spherical HA-PANI NPs are well-dispersed in aqueous solutions, with average hydrodynamic diameters of around 100 nm. Besides, HA-PANI NPs have negligible cytotoxicity in vitro, which facilitates biomedical applications with low toxicity. We studied the in vitro photothermal cell-killing efficacy of HA-PANI NPs by MTT assay and confocal microscopy measurement. The results reveal that HA-PANI NPs can selectively kill the cancer cells of HeLa and HCT-116 cells rather than normal cells of HFF cells upon exposure to a NIR 808 nm laser. The efficient intracellular intake of the HA-PANI NPs by both HeLa and HCT-116 cells are observed, confirming their targeting ability for CD44-overexpressing cancer cells. Furthermore, the results of in vivo photothermal ablation of tumors show excellent treatment efficacy, indicating that the HA-PANI NPs can be considered as an extremely promising nanoplatform for targeted PTT of cancer.

17.
ACS Appl Mater Interfaces ; 6(20): 18008-17, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25248075

RESUMO

The biomedical applications of carbon nanomaterials, especially integrating noninvasive photothermal therapy (PTT) and photodynamic therapy (PDT), into a single system have enormous potential in cancer therapy. Herein, we present a novel and facile one-step method for the preparation of water-soluble single-walled carbon nanohorns (SWNHs) and metal phthalocyanines (MPc) hybrid for PTT and PDT. The hydrophilic MPc, tetrasulfonic acid tetrasodium salt copper phthalocyanine (TSCuPc), is coated on the surface of SWNHs via noncovalent π-π interaction using the sonication method. In this PTT/PDT nanosystem, SWNHs acts as a photosensitizer carrier and PTT agent, while TSCuPc acts as a hydrophilic and PDT agent. The EPR results demonstrated that the generated reactive oxygen species (ROS) not only from the photoinduced electron transfer process from TSCuPc to SWNHs but also from SWNHs without exciting TSCuPc to its excited state. The test of photothermal conversion proved that not only do SWNHs contribute to the photothermal therapy (PTT) effect, TSCuPc probably also contributes to that when it coats on the surface of SWNHs upon exposure to a 650-nm laser. More importantly, the results of in vitro cell viability revealed a significantly enhanced anticancer efficacy of combined noninvasive PTT/PDT, indicating that the SWNHs-TSCuPc nanohybrid is a hopeful candidate material for developing an efficient and biocompatible nanoplatform for biomedical application.


Assuntos
Hipertermia Induzida , Indóis/química , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Fotoquimioterapia , Fototerapia , Água/química , Carbono/química , Morte Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Isoindóis , Microscopia Confocal , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Fotodegradação , Espectroscopia Fotoeletrônica , Solubilidade , Análise Espectral Raman , Termogravimetria , Fatores de Tempo
18.
J Mater Chem B ; 2(41): 7141-7148, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261792

RESUMO

In this paper, we present a new and facile one-step method for the fabrication of a water-soluble graphene-phthalocyanine (GR-Pc) hybrid material by simply sonicating GR with a hydrophilic Pc, tetrasulfonic acid tetrasodium salt copper phthalocyanine (TSCuPc). In the resultant hybrid material, TSCuPc is coated on the skeleton of pristine GR via non-covalently π-π interaction, detailedly characterized by UV-vis/Raman spectra, X-ray photoelectron spectroscopy (XPS), etc. The obtained GR-Pc hybrid (GR-TSCuPc) is applied for photothermal therapy (PTT) and photodynamic therapy (PDT). In this PTT/PDT system, both GR and TSCuPc operate as multifunctional agents: GR acts as a photosensitizer carrier and PTT agent, while TSCuPc acts as a hydrophilic PDT agent. Furthermore, the results of cell viability show that the phototherapy effect of GR-TSCuPc is observably higher than that of free TSCuPc, indicating that combined noninvasive PTT/PDT exhibits better anti-cancer efficacy in vitro. Such results highlight that this work provide a facile method to develop efficacious dual-modality carbon nanoplatform for developing cancer therapeutics.

19.
J Chem Phys ; 135(13): 134116, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21992291

RESUMO

In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple mesoscopic model of the solvent is required. We propose to extend the multiparticle collision dynamics (MPC) technique--a particle-based simulation method, which has been successfully applied to study the hydrodynamic behavior of many complex fluids with Newtonian solvent--to shear-thinning viscoelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under simple shear flow with shear rate ̇γ. The stress tensor is calculated, and the viscosity η and the first normal-stress coefficient Ψ(1) are obtained. Shear-thinning behavior is found for reduced shear rates Γ= ̇γτ>1, where τ is a characteristic dumbbell relaxation time. Here, both η and Ψ(1) display power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC collisions provides a good description of viscoelastic fluids. As a first application, we study the flow behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement with recent numerical calculations and experimental results.

20.
Langmuir ; 22(2): 553-9, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-16401102

RESUMO

The spontaneous formation of vesicles from amphiphiles with dispersed molecular weight (MW) as well as with mono-MW has been studied by a lattice Monte Carlo simulation. Both pure and mixed amphiphiles were self-assembled into vesicles under appropriate conditions. When mixed amphiphiles were examined, the amphiphiles with longer hydrophilic blocks preferred to segregate into the outer monolayer of the resultant vesicles, which is consistent with the experimental observations in recent literature. The kinetic study reveals that the increase of vesicle size is mainly caused by the mechanism of vesicle fusion at the early stage, and the evaporation-condensation mechanism cannot be neglected at the late stage. The fusion of vesicles is accompanied by translocation of chains from the outer monolayer to the inner monolayer. For mixed amphiphiles, the degree of segregation exhibits a size dependence of the vesicle. Compared to the chains with shorter hydrophilic blocks, those with longer hydrophilic blocks exhibit stronger trends to translocate from the outer monolayer to the inner one in vesicle self-adjustment, which leads to the quasi-equilibrium asymmetric distribution of the hydrophilic blocks in the post-fused vesicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...